
Templet: Domain-specific Language
 for Concurrency Control*

Sergey V. Vostokin
Dept. of Information Systems and Technologies

Samara State Aerospace University named after S.P. Korolyov (national research university)
Samara, Russia

sergey.vostokin@gmail.com

Abstract—The article presents a new domain-specific
language (DSL) for concurrency control. Runtime library is a
common way to implement concurrency control. However, this
method often leads to an increase in application complexity. The
design of new concurrent language is natively difficult. We
propose a compromise solution which uses DSL with C++
programming language. The article discusses DSL syntax,
programming model, and implementation of concurrency control
in the Templet language.

Keywords—domain-specific language; concurrency control;
actor model; language-oriented programming; skeleton
programming

I. INTRODUCTION

The Templet language [1] is a domain-specific language
(DSL). It is designed to be used together with a sequential
procedural or an object-oriented programming language. The
new property of the language is an explicit specification of the
process-channel computation semantics with a marked serial
code.

The article focuses on a design of the markup language.
The design concepts of the language basically follow the
concept of the language-oriented programming [2,3]. The
algebraic-like notation similar to the CSP formalism was
applied to describe processes and interactions [4]. The idea of a
minimalistic design with emphasis on the basic abstractions is
taken from the programming language Oberon [5].

The language design is based on the three concepts. The
first one is so called active markup. Usually a markup is read
form the source file and produces some effects in the target file
(e.g. adding synchronization and/or communication
commands). In our approach source and target is one file. The
file is rebuild during preprocessing. The markup controls an
file transformation to keep a desired code structure.

The second one is a programming model. We introduce a
diffusive (with no locking) programming model that describes
concurrent activity as a message exchange between sequential
processes (agents, actors). They are activated by incoming
messages. The channels defines message exchange protocols.
The model avoids concurrent data access, hence it is easier to
use when multithreading.

The third concept is based on description of concurrent
activity with sequential code. This method is derived from a
formal theories that consider parallel process as set of
behaviors (sequences of system states and/or atomic actions).
We simulate such a sequences with random number generator.

The following paragraphs illustrate these concepts with
Templet syntax and code examples. The article ends with an
overview of language benefits. The experimental preprocessor
and code samples in marked C++ are available at
http://templet.ssau.ru/templet.

II. ACTIVE MARKUP

To describe the syntax, an extended Backus-Naur
Formalism called EBNF is used. The following EBNF rules
describe the block structure of a module.

module = {base-language|user-block} module-scheme
 {base-language|user-block}.
user-block = user-prefix base-language
 user-postfix.
module-scheme = scheme-prefix
 { channel | process } scheme-postfix.

The module code consists of a single module scheme
section and multiple code sections in C++ language with
highlighted user blocks. These sections are distinguished from
the rest of the code by means of C++ comments. For example,
the marked C++ code may look as follows. The blocks’ names
according to the markup language syntax are shown on the
right side.

#include <runtime.h> <-- base-language

/*templet$$include*/ <-- user-prefix
 #include <iostream> <-- base-language
/*end*/ <-- user-postfix

/*templet* <-- scheme-prefix
 *hello<function>. <-- module-scheme
end/ <-- scheme-postfix

void hello(){ <-- base-language
/*templet$hello$*/ <-- user-prefix
 std::cout <<
''hello world!!!''; <-- base-language
/*end*/ <-- user-postfix
} <-- base-language

Lexical analyzer defines the boundaries of the blocks by
signatures, recognizing specific sub-strings in a character

This work was supported by the Ministry of Education and Science of the Russian Federation within the framework of the Program designed to increase
the competitiveness of SSAU among the world's leading scientific and educational centers over the period from 2013 till 2020; and it was partially supported
by the RFBR grant 15-08-05934 A.

stream. For example, the module scheme may be preceded by a
combination of characters /*templet*, and finish by
end/. User block prefixes include identifiers for binding the
blocks with module scheme: /*templet$hello$*/ bound
with *hello<function>. The module is a program skeleton,
and user blocks are extension points. Module scheme defines
the structure of program skeleton.

The markup language provides a mapping algorithm.
Mapping is a module transformation carried out by rewriting
the module code. Mapping is applied only to a module with
syntactically correct scheme. As a result of this transformation
the code and the scheme becomes isomorphic meaning that the
scheme can be reproduced from the code and vice versa. New
user blocks may appear. Existing user blocks may move to new
positions or turn into comments.

III. PROGRAMMING MODEL
The module scheme includes definitions of the two DSL

classes: channel and process. The channel describes
communication, while the process describes data processing.
Any DSL class inherits its behavior from BaseChannel or
BaseProcess Templet runtime classes. The classes should be
implemented in a way that the following behavior is possible.

class Channel: public BaseChannel{
 public:
 // test whether the channel it accessible
 bool access_client(){...} // at client side
 bool access_server(){...} // at server side
 // client sends entire channel to server
 void send_client(){...}
 // server sends entire channel to client
 void send_server(){...}
...
};

class Process: public BaseProcess{
 public:
 // receive data on the channel
 virtual void recv(BaseChannel*);
 // bind a channel to the process as client
 bool bind_client(BaseChannel*){...}
 // .. or server
 bool bind_server(BaseChannel*){...}
...
}
The BaseChannel has the following behavior. The access

to the channel alternately belongs to pair of processes called
client and server. The client process has access right to the
channel in the beginning of computations. Methods
access_client() and access_server() allow client or
server to check for access. Methods send_client() and
send_server() can be used to grant access from client to
server or from server to client respectively.

The BaseProcess has the following behavior. Methods
bind_client() and bind_server() establish connection
between a process (as a client or as a server) and a channel.
Method recv() is called at the moment getting access to the
channel. The channel is passed as recv() argument.

The implementation also carries out the rules below. If the
process gets access to multiple channels, it takes several
consecutive calls to recv() in random order. If some process
sends the access to another process, the other process will
sooner or later get the access to a channel.

IV. CONCURRENT EXECUTION SEMANTICS

The program implementation in C++ language should
provide the opportunity for nondeterministic performance.
Nondeterminism of program execution is simulated by means
of pseudo-random numbers.

void TempletProgram::run()
{
 size_t rsize;
 // while message queue is not empty
 while(rsize=ready.size()){
 //select random channel which
 //is currently sending message
 //then exclude this channel
 //from the message queue
 //and move it to not sending state

 int n=rand()%rsize;
 auto it=ready.begin()+n;
 BaseChannel*c=*it;ready.erase(it);
 c->sending=false;

 //extract the process to which the message
 //was sent from the channel
 //run message handling method recv()
 //for the channel and
 //pass the channel as
 //the argument to this method

 c->p->recv(c);
 }
}
For truly parallel execution of code appropriate libraries are

necessary. Some modifications to mapping algorithm may also
be required.

V. MODULE SCHEME SYNTAX

This is a complete EBNF description of module scheme in
the Templet language.

channel = '~' ident [params]
 ['=' state {';' state}] '.'.
state = ['+'] ident [('?'|'!') [rules]].
rules = rule { '|' rule }.
rule = ident { ',' ident } '->' ident.
process = '*' ident [params]
 ['=' ((ports [';' actions])
 | actions)] '.'.
ports = port {';' port}.
port = ident ':' ident
 ('?'|'!')[(rules ['|' '->' ident])
 |('->' ident)].
actions = action {';' action}.
action = ['+'] [ident ':'] disjunction ['->'
 ([ident] '|' ident) | ident].
disjunction = conjunction { '|' conjunction}.
conjunction = call {'&' call}.
call = ident '(' [args] ')'.
args = ident ('?'|'!') ident
 {',' ident ('?'|'!') ident }.
params = '<' ident {',' ident} '>'.

For example, there is a program that checks the
trigonometric identity sin2x+cos2x=1. When process of Master
class sends x values to working processes of Worker class via
channels of Link class. The master gets the squares of
trigonometric functions and calculates their sum in return.
Channel protocol to verify the trigonometric identity may be
coded in Templet DSL like below.

~Link = +BEGIN ? ArgCos -> CALCCOS |
 ArgSin -> CALCSIN;

 CALCCOS ! Cos2 -> END;
 CALCSIN ! Sin2 -> END.

Processes for checking the trigonometric identity can be
defined as follows.

*Master =
 p1:Link ! Sin2 -> join;
 p2:Link ! Cos2 -> join;

 +fork(p1!ArgSin,p2!ArgCos);
 join(p1?Sin2,p2?Cos2).

*Worker =
 p : Link ? ArgSin -> sin2 | ArgCos ->

cos2;
 sin2(p?ArgSin,p!Sin2);
 cos2(p?ArgCos,p!Cos2).

A program is a network of objects. Objects are instances of
classes in C++ programming language. These classes are in
turn derived from channels or processes in the Templet
language. The network of objects is defined in the C++
programming language.

VI. APPLICATIONS OVERVIEW

The current implementation includes another three samples
to illustrate the practical use of the Templet domain language.

The Gauss-Seidel method for solving the Laplace equation
is th first one. This example illustrates the use of the toolkit in
the field of scientific computing. It also shows how the
simulation runtime can help to predict program performance
without an explicit mathematical model or parallel execution.

An example from the field of linear algebra is the second
one. This is an illustration of distributed matrix multiplication
algorithm. Our implementation of the actor model is well
suited both for shared and distributed parallel architectures.

The business process model example is the third one. The
Templet DSL can be used to model and analyze concurrency in
non-technical systems, for example, in the area of business
process modeling. We studied a business scenario written in a
human language and composed a formal specification for the
scenario in the Templet language. The static type analysis,
debugging, and testing of the program were used to verify the
correctness of the specification. In particular, we compared
programmatically generated event sequences with expected
sequences for the studied business process. This example
illustrates that in our approach much of model verification is
done by C++ compiler and Templet runtime.

VII. RESULTS

The implementation of the domain-specific language
toolkit showed the following benefits of our approach.

Additional language constructions are not required to
explain the meaning of an algorithm with concurrent control.
This is similar to approach based on object-oriented libraries
STL [6], TBB [7], CCR [8], Boost [9], and others. However,
the markup and preprocessing technique reduces the amount of
manual coding.

More reliable protection against programming errors is
provided. This feature is compatible with concurrent

programming languages Go [10], Occam [11], Limbo [12],
Erlang [13]. Static type checking in the C++ language helps to
prevent incorrect connection of message source and message
recipient. Semantic checking can also be implemented at the
preprocessor level. For example, one can check the attainability
of a state in the communication protocol for channels and the
possibility to call a method for processes. The check can also
be carried out during the program execution. If pair of
processes does not perform a prescribed messaging protocol,
calculations will stop.

Behavior of the Templet program can be investigated in
more detail by means of problemoriented debugger. The
mapping algorithm can add code to provide information to the
debugger. The performance prediction of a parallel program is
also possible. Discrete event simulation library can easily
replace standard execution mechanism.

The markup language is a mean of skeleton programming
and code reuse [14, 15]. One can design a universal skeleton
for programs with similar control flow and adapt it to specific
applications. The adaptation is made by the changing of
message variables and handlers. This technique can be used for
programming multi-core and many-core systems [16, 17].

The markup language defines concurrent execution with
sequential code. This technique is used in incremental
lateralization. A number of well-known [18,19] and
experimental [20,21] tools for defining iterative or recursive
parallelism are based on markup. We adopted the same method
for a process-channel model of concurrent control.

The DSL language can be applied to different general-
purpose programming languages. It is compatible with the
modern technologies [22,23] used in industrial process control
software development.

VIII.CONCLUSION

Our research shows a practical interest of the DSL-based
approach for concurrency control. We got a fully working but
relatively simple implementation of the Templet domain-
specific language. This implementation had been deployed
online as a part of the web service TempletWeb
(template.ssau.ru/templet).

REFERENCES

[1] S. Vostokin, “Templet: a markup language for concurrent
programming,” arXiv preprint arXiv:1412.0981, 2014.

[2] M.P. Ward, “Language-oriented programming,” Software-Concepts and
Tools, vol. 15, no. 4, pp. 147–161, 1994.

[3] S. Dmitriev, “Language oriented programming: The next programming
paradigm,” JetBrains onBoard, vol. 1, no. 2, pp. 1–13, 2004.

[4] C. Hoare, “Communicating sequential processes,” in The origin of
concurrent programming. Springer, 2002, pp. 413–443.

[5] N. Wirth, “The programming language Oberon,” Software: Practice and
Experience, vol. 18, no. 7, pp. 671–690, 1988.

[6] B. Stroustrup, The C++ programming language. Pearson Education,
2013.

[7] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. "O’Reilly Media, Inc.2007.

[8] J. Richter, “Concurrent affairs-concurrency and coordination runtime.”
MSDN MagazineLouisville, pp. 117–128, 2006.

[9] B. Schäling, The boost C++ libraries. Boris Schäling, 2011.

[10] The Go programming language specification. Google Inc., 2009,
http://golang.org/doc/go_spec.html.

[11] Occam programming manual. INMOS Limited. Prentice Hall Direct,
1984.

[12] D.M. Ritchie, “The Limbo programming language,” Inferno
Programmer(TM) Manual, vol. 2, 1997.

[13] J. Larson, “Erlang for concurrent programming,” Communications of
the ACM, vol. 52, no. 3, pp. 48–56, 2009.

[14] M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming,” Parallel computing, vol. 30, no. 3,
pp. 389–406, 2004.

[15] H. González-Vélez and M. Leyton, “A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers,”
Software: Practice and Experience, vol. 40, no. 12, pp. 1135–1160,
2010.

[16] M. Aldinucci, M. Danelutto, and P. Kilpatrick, “Skeletons for
multi/many-core systems.” in PARCO, 2009, pp. 265–272.

[17] Y. Karasawa and H. Iwasaki, “A parallel skeleton library for multi-core
clusters,” in Parallel Processing, 2009. ICPP’09. International
Conference on. IEEE, 2009, pp. 84–91.

[18] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” Computational Science & Engineering, IEEE,
vol. 5, no. 1, pp. 46–55, 1998.

[19] R. Blumore, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y.
Zhou, “Cilk: An efficient multithreaded runtime system,” Journal of
parallel and distributed computing, vol. 37, no. 1, pp. 55–69, 1996.

[20] N. Konovalov, V. Krukov, and Y. L. Sazanov, “C-dvm-a language for
the development of portable parallel programs,” Programming and
Computer Software, vol. 25, no. 1, pp. 46–55, 1999.

[21] S. Abramov, A. Adamovich, A. Inyukhin, A. Moskovsky, V. Roganov,
E. Shevchuk, Y. Shevchuk, and A. Vodomerov, “Opents: an outline of
dynamic parallelization approach,” in Parallel Computing Technologies.
Springer, 2005, pp. 303–312.

[22] C. Atkinson and T. Kuhne, “Model-driven development: a
metamodeling foundation,” Software, IEEE, vol. 20, no. 5, pp. 36–41,
2003.

[23] B. Selic, “The pragmatics of model-driven development,” IEEE
software, vol. 20, no. 5, pp. 19–25, 2003.

	I. Introduction
	II. Active Markup
	III. Programming Model
	IV. Concurrent Execution Semantics
	V. Module Scheme Syntax
	VI. Applications Overview
	VII. Results
	VIII. Conclusion

