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Abstract—The  article  presents  a  new  domain-specific
language  (DSL)  for  concurrency control.  Runtime  library  is  a
common way to implement concurrency control. However, this
method often leads to an increase in application complexity. The
design  of  new  concurrent  language  is  natively  difficult.  We
propose  a  compromise  solution  which  uses  DSL  with  C++
programming  language.  The  article  discusses  DSL  syntax,
programming model, and implementation of concurrency control
in the Templet language.
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I.  INTRODUCTION

The Templet  language [1]  is  a  domain-specific  language
(DSL).  It  is  designed  to  be  used  together  with a  sequential
procedural  or an object-oriented programming language.  The
new property of the language is an explicit specification of the
process-channel  computation semantics  with a  marked serial
code.

The article  focuses on a design of the markup language.
The  design  concepts  of  the  language  basically  follow  the
concept  of  the  language-oriented  programming  [2,3].  The
algebraic-like  notation  similar  to  the  CSP  formalism  was
applied to describe processes and interactions [4]. The idea of a
minimalistic design with emphasis on the basic abstractions is
taken from the programming language Oberon [5].

The language design is based on the three concepts.  The
first one is so called active markup. Usually a markup is read
form the source file and produces some effects in the target file
(e.g.  adding  synchronization  and/or  communication
commands). In our approach source and target is one file. The
file is  rebuild during preprocessing.  The markup controls an
file transformation to keep a desired code structure.

The second one is a programming model. We introduce a
diffusive (with no locking) programming model that describes
concurrent activity as a message exchange between sequential
processes  (agents,  actors).  They  are  activated  by  incoming
messages. The channels defines message exchange protocols.
The model avoids concurrent data access, hence it is easier to
use when multithreading.

The  third  concept  is  based  on  description  of  concurrent
activity with sequential code. This method is derived from a
formal  theories  that  consider  parallel  process  as  set  of
behaviors (sequences of system states and/or atomic actions).
We simulate such a sequences with random number generator.

The  following  paragraphs  illustrate  these  concepts  with
Templet syntax and code examples. The article ends with an
overview of language benefits. The experimental preprocessor
and  code  samples  in  marked  C++  are  available  at
http://templet.ssau.ru/templet.

II. ACTIVE MARKUP

To  describe  the  syntax,  an  extended  Backus-Naur
Formalism called EBNF is used. The following EBNF rules
describe the block structure of a module.

module = {base-language|user-block} module-scheme
         {base-language|user-block}.
user-block = user-prefix base-language 
             user-postfix.
module-scheme =  scheme-prefix 
           { channel | process } scheme-postfix.

The  module  code  consists  of  a  single  module  scheme
section  and  multiple  code  sections  in  C++  language  with
highlighted user blocks. These sections are distinguished from
the rest of the code by means of C++ comments. For example,
the marked C++ code may look as follows. The blocks’ names
according  to  the  markup language  syntax  are  shown on the
right side.

#include <runtime.h>          <-- base-language

/*templet$$include*/          <-- user-prefix
  #include <iostream>         <-- base-language
/*end*/                       <-- user-postfix

/*templet*                    <-- scheme-prefix
  *hello<function>.           <-- module-scheme
*end*/                        <-- scheme-postfix

void hello(){                 <-- base-language
/*templet$hello$*/            <-- user-prefix
  std::cout << 
''hello world!!!'';           <-- base-language
/*end*/                       <-- user-postfix  
}                             <-- base-language

Lexical  analyzer  defines the boundaries  of the blocks by
signatures,  recognizing  specific  sub-strings  in  a  character
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stream. For example, the module scheme may be preceded by a
combination  of  characters  /*templet*,  and  finish  by
*end*/. User block prefixes include identifiers for binding the
blocks  with  module  scheme:  /*templet$hello$*/ bound
with *hello<function>. The module is a program skeleton,
and user blocks are extension points. Module scheme defines
the structure of program skeleton.

The  markup  language  provides  a mapping  algorithm.
Mapping is a module transformation  carried out by rewriting
the module code. Mapping is applied only to a module with
syntactically correct scheme. As a result of this transformation
the code and the scheme becomes isomorphic meaning that the
scheme can be reproduced from the code and vice versa. New
user blocks may appear. Existing user blocks may move to new
positions or turn into comments.

III. PROGRAMMING MODEL
The module scheme includes definitions of the two DSL

classes:  channel  and  process.  The  channel  describes
communication,  while the process  describes  data processing.
Any DSL class  inherits  its  behavior  from  BaseChannel or
BaseProcess Templet runtime classes. The classes should be
implemented in a way that the following behavior is possible.

class Channel: public BaseChannel{
 public:
  // test whether the channel it accessible
  bool access_client(){...} // at client side
  bool access_server(){...} // at server side
  // client sends entire channel to server
  void send_client(){...}
  // server sends entire channel to client 
  void send_server(){...}
...
};

class Process: public BaseProcess{
 public:
  // receive data on the channel 
  virtual void recv(BaseChannel*);
  // bind a channel to the process as client 
  bool bind_client(BaseChannel*){...}
  // .. or server
  bool bind_server(BaseChannel*){...}
...
}
The BaseChannel has the following behavior. The access

to the channel alternately belongs to pair of processes called
client  and server.  The client  process  has  access  right  to the
channel  in  the  beginning  of  computations.  Methods
access_client() and  access_server() allow client  or
server  to  check  for  access.  Methods  send_client() and
send_server() can be used to grant access from client to
server or from server to client respectively.

The  BaseProcess has  the  following behavior.  Methods
bind_client() and  bind_server() establish  connection
between a process (as a client or as a server) and a channel.
Method  recv() is called at the moment getting access to the
channel. The channel is passed as recv() argument.

The implementation also carries out the rules below. If the
process  gets  access  to  multiple  channels,  it  takes  several
consecutive calls to recv() in random order. If some process
sends  the  access  to  another  process,  the  other  process  will
sooner or later get the access to a channel.

IV. CONCURRENT EXECUTION SEMANTICS

The  program  implementation  in  C++  language  should
provide  the  opportunity  for  nondeterministic  performance.
Nondeterminism of program execution is simulated by means
of pseudo-random numbers.

void TempletProgram::run()
{
  size_t rsize;
  // while message queue is not empty
  while(rsize=ready.size()){
    //select random channel which
    //is currently sending message
    //then exclude this channel 
    //from the message queue
    //and move it to not sending state

    int n=rand()%rsize;
    auto it=ready.begin()+n;
    BaseChannel*c=*it;ready.erase(it);
    c->sending=false;

    //extract the process to which the message
    //was sent from the channel
    //run message handling method recv()
    //for the channel and
    //pass the channel as 
    //the argument to this method

    c->p->recv(c);
  }
}
For truly parallel execution of code appropriate libraries are

necessary. Some modifications to mapping algorithm may also
be required.

V. MODULE SCHEME SYNTAX

This is a complete EBNF description of module scheme in
the Templet language.

channel = '~' ident [params] 
          ['=' state {';' state}] '.'.
state = ['+'] ident [ ('?'|'!')  [rules] ].
rules = rule { '|' rule }.
rule = ident { ',' ident } '->' ident.
process = '*' ident [params]
          ['=' ((ports [';' actions])
            | actions) ] '.'.
ports = port {';' port}.
port  = ident ':' ident
         ('?'|'!')[(rules ['|' '->' ident])
         |( '->' ident)].
actions = action {';' action}.
action  = ['+'] [ident ':'] disjunction ['->' 
            ([ident] '|' ident) | ident].
disjunction = conjunction { '|' conjunction}.
conjunction = call {'&' call}. 
call = ident '(' [args] ')'.
args = ident ('?'|'!') ident 
     {',' ident ('?'|'!') ident }.
params = '<' ident {',' ident} '>'.

For  example,  there  is  a  program  that  checks  the
trigonometric identity sin2x+cos2x=1. When process of Master
class sends x values to working processes of Worker class via
channels  of  Link class.  The  master  gets  the  squares  of
trigonometric  functions  and  calculates  their  sum  in  return.
Channel protocol to verify the trigonometric identity may be
coded in Templet DSL like below.

~Link = +BEGIN ? ArgCos -> CALCCOS | 
                 ArgSin -> CALCSIN;



         CALCCOS ! Cos2 -> END;
         CALCSIN ! Sin2 -> END.

Processes  for  checking  the  trigonometric  identity  can  be
defined as follows.

*Master = 
       p1:Link ! Sin2 -> join;
       p2:Link ! Cos2 -> join;

      +fork(p1!ArgSin,p2!ArgCos);
       join(p1?Sin2,p2?Cos2).

*Worker =
       p : Link ? ArgSin -> sin2 | ArgCos -> 

cos2;
       sin2(p?ArgSin,p!Sin2);
       cos2(p?ArgCos,p!Cos2).

A program is a network of objects. Objects are instances of
classes  in C++ programming language.  These classes  are  in
turn  derived  from  channels  or  processes  in  the  Templet
language.  The  network  of  objects  is  defined  in  the  C++
programming language.

VI. APPLICATIONS OVERVIEW

The current implementation includes another three samples
to illustrate the practical use of the Templet domain language.

The Gauss-Seidel method for solving the Laplace equation
is th first one. This example illustrates the use of the toolkit in
the  field  of  scientific  computing.  It  also  shows  how  the
simulation runtime can help to predict  program performance
without an explicit mathematical model or parallel execution.

An example from the field of linear algebra is the second
one. This is an illustration of distributed matrix multiplication
algorithm.  Our  implementation  of  the  actor  model  is  well
suited both for shared and distributed parallel architectures.

The business process model example is the third one. The
Templet DSL can be used to model and analyze concurrency in
non-technical  systems,  for  example,  in  the  area  of  business
process modeling. We studied a business scenario written in a
human language and composed a formal specification for the
scenario  in  the  Templet  language.  The  static  type  analysis,
debugging, and testing of the program were used to verify the
correctness  of  the  specification.  In  particular,  we  compared
programmatically  generated  event  sequences  with  expected
sequences  for  the  studied  business  process.  This  example
illustrates that in our approach much of model verification is
done by C++ compiler and Templet runtime.

VII. RESULTS

The  implementation  of  the  domain-specific  language
toolkit showed the following benefits of our approach.

Additional  language  constructions  are  not  required  to
explain the meaning of an algorithm with concurrent control.
This is similar to approach based on object-oriented libraries
STL [6], TBB [7], CCR [8], Boost [9], and others. However,
the markup and preprocessing technique reduces the amount of
manual coding. 

More  reliable  protection  against  programming  errors  is
provided.  This  feature  is  compatible  with  concurrent

programming  languages  Go  [10],  Occam  [11],  Limbo  [12],
Erlang [13]. Static type checking in the C++ language helps to
prevent incorrect  connection of message source and message
recipient.  Semantic checking can also be implemented at the
preprocessor level. For example, one can check the attainability
of a state in the communication protocol for channels and the
possibility to call a method for processes. The check can also
be  carried  out  during  the  program  execution.  If  pair  of
processes does not perform a prescribed messaging protocol,
calculations will stop. 

Behavior  of  the Templet  program can  be investigated  in
more  detail  by  means  of  problemoriented  debugger.  The
mapping algorithm can add code to provide information to the
debugger. The performance prediction of a parallel program is
also  possible.  Discrete  event  simulation  library  can  easily
replace standard execution mechanism. 

The markup language is a mean of skeleton programming
and code reuse [14, 15]. One can design a universal skeleton
for programs with similar control flow and adapt it to specific
applications.  The  adaptation  is  made  by  the  changing  of
message variables and handlers. This technique can be used for
programming multi-core and many-core systems [16, 17]. 

The  markup  language  defines  concurrent  execution  with
sequential  code.  This  technique  is  used  in  incremental
lateralization.  A  number  of  well-known  [18,19]  and
experimental  [20,21] tools  for  defining iterative  or  recursive
parallelism are based on markup. We adopted the same method
for a process-channel model of concurrent control.

The  DSL language  can  be  applied  to  different  general-
purpose  programming  languages.  It  is  compatible  with  the
modern technologies [22,23] used in industrial process control
software development.

VIII.CONCLUSION

Our research shows a practical interest of the DSL-based
approach for concurrency control. We got a fully working but
relatively  simple  implementation  of  the  Templet  domain-
specific  language.  This  implementation  had  been  deployed
online  as  a  part  of  the  web  service  TempletWeb
(template.ssau.ru/templet).
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