
The Use of Temporal Logic to Represent the
Templet Language Runtime Behavior?

Sergey V. Vostokin

Samara State Aerospace University, 34, Moskovskoye shosse, Samara, 443086, Russia

Abstract. The article presents the concurrent programming language
named Templet from the point of its formal specification. The language
is based on the actor formalism. We use Lamport’s Temporal Logic of
Actions (TLA) to define the language runtime library behavior. A review
of the programming tool functionality including domain-specific language
Templet, the runtime library, and some practical applications is given.

1 Introduction

The Templet is a domain-specific language (DSL) for concurrent programming.
The language programming tools include a preprocessor and several runtime
libraries that can be found at https://github.com/Templet-language. The
DSL demonstrates a novel approach to extend C++ programming language with
actor semantics of execution. The approach is a variant of the language-oriented
programming, where automatic code synthesis is guided by DSL.

Our design goal was to make a simple and practical tool for concurrent pro-
gramming based on the actor formalism. The actor model gives advantages when
applications are highly-parallel by nature: multi- and many- core systems, high
performance computing, industrial control systems, Internet of Things, business
process management, and others.

We propose a formal specification of the actor programming model for the
Templet language. The goal of the specification is to explain how the Templet
language runtime works independently from a particular implementation. The
specification helps application programmers to understand Templet DSL seman-
tics. Also the DSL serves as a guideline for runtime library implementers.

2 Related Works

Well-known parallel programming tools are implemented as a library (Intel TBB,
Akka), entirely new language (Go, Scala), or extension for existing language

? This work was supported by the Ministry of Education and Science of the Russian
Federation within the framework of the Program designed to increase the competi-
tiveness of SSAU among the world’s leading scientific and educational centers over
the period from 2013 till 2020; and it was partially supported by the RFBR grant
15-08-05934 A.

(OpenMP, Intel Cilk Plus). We propose a DSL-based approach [1] which is na-
tively compatible with existing compilers, libraries, integrated development envi-
ronments. We use the actor model [2] that is a good basis for effective execution
in shared and distributed memory architectures (e.g. Erlang). Our laguage is a
kind of skeleton programming tools [3]. The DSL algebraic-like syntax is similar
to Hoare’s CSP notation [4]. The idea of simple design for complex problems
was implied by Wirth’s Oberon [5] The language supports model-driven devel-
opment [6]. However, the use of a temporal logic for actor-like runtime library
specification was not studied earlier.

The article has the following structure. First, we introduce the formal spec-
ification of the variant of actor programming model for the language. We use
the Temporal Logic of Actions introduced by Leslie Lamport [7] for the specifi-
cation. Then, we describe a runtime library that implements given specificafion.
After that the binding between runtime library and application code is discussed.
Finally, we make a brief overview of some practical examples.

3 Specification of Programming Model

The tool was designed for a synthesis of programs with actor execution semantics.
Our method of actor model implementation focuses on passing the right of access
to objects and on passing the activity between actors rather then on classical
message passing. This approach enables us to build precise specification and a
compact implementation of the runtime.

Let Var be a set of all program variables. We suppose that there is a function
IF that defines to which actor (process) or channel (message) a variable belongs1.

IF : Var→ {actor,message} × IN , (1)

where a number from set IN denotes an actor or message identifier. In a specific
implementation (namely in C++) this binding may be expressed with classes,
structures, or simply implied by a programmer.

Let the set

{p[1], p[2], . . . , p[i], . . . , cp[1], cp[2], . . . , cp[j], . . . , c[1], c[2], . . . , c[j], . . .} (2)

denotes all runtime variables with the following components: (a) the process
activity for the actor i is expressed as p[i] ∈ {0, 1}, where Boolean 0 means not
active, and Boolean 1 means the actor is active, it handels a message; (b) the
channel activity is expressed as c[j] ∈ {0, 1}, where Boolean 0 means that the
message already arrived to an actor, and Boolean 1 means that the message is
transmitted ; (c) the array cp[j] ∈ IN of runtime variables stores an identifier of
an actor to which message j belongs. A message belongs to an actor, if this

1 We use terms actor and process interchangeably. The actor is an object that controls
the sequential process of message handling. Also we assume that the channel is an
object that controls message exchange.

message is being transferred to this actor now, or had been transferred to this
actor already.

By using these designations we can express the runtime atomic actions that
change the system state.

A1 ≡ ∃!j : ¬p[i] ∧ c[j] ∧ cp[j] = i ∧ p′[i] ∧ ¬c′[j] ∧ cp′[j] = i . (3)

The formula (3) means that (a) when message arrives, it activates a handling
procedure; and (b) only one message can be handled at the same time2.

A2 ≡ p[i] ∧ ¬p′[i] . (4)

The action denoted by the formula (4) is executed at the end of message handling.

A3 ≡ ∃i : p[i] ∧ cp[j] = i ∧ ¬c[j] ∧ c′[j] . (5)

The formula (5) means that any message which is accessible during a handling
procedure can be sent to any actor.

The formula (6)
A4 ≡ c[j] ∧ ¬c′[j] (6)

denotes a message coming to an actor.
The liveness properties of the runtime assume that, if actions A2 (4) and A4

(6) are enabled long enough they will eventually be executed. There are so called
weak fairness conditions (WF). Combining formulas (3)-(6) with the temporal
operators and assuming that the initial system state is I ≡ ∃i : p[i] ∨ ∃j : c[j],
actor i state is f1 ≡ p[i], and channel j state is f2 ≡ (c[j], cp[j]) we finally have
formula

S ≡ I ∧�[A1 ∨A2]f1 ∧�[A3 ∨A4]f2 ∧WFf1(A2) ∧WFf2(A4) (7)

that completes the runtime behavior specification3.

4 Runtime Library Implementations

The specification (7) is used to define the primitive operations of the language
runtime library. The runtime has three primitive operations. The first, recv()
is a callback procedure. It is activated in the context of some actor i to process
the received message j:

recv(call)(i, j) ≡ ¬p[i] ∧ c[j] ∧ cp[j] = i ∧ p′[i] ∧ ¬c′[j] ∧ cp′[j] = i , (8)

2 To express a change of the system state we use primed variables (var′) in logical
formulas. They denote the values of the variables in the next state (t+ 1), while the
non-primed variables (var) express a values in the current system state (t). Note that
variables i and j are temporal constants. Their values are unknown, but constant in
time.

3 The notation �[A]f defines that for every pair of system states expression
A ∨ (f = f ′) is true. This mean that at any time the system state is changed by A
action or remains unchanged.

recv(return)(i) ≡ p[i] ∧ ¬p′[i] . (9)

The action (8) is performed when the recv() procedure is called from the run-
time. The action (9) is performed on recv() procedure return.

The second, access() is a logical function. It is called by a programmer from
the recv() procedure. The function tests whether variables associated with the
message j are accessible from the handling procedure of the actor i:

access(i, j) ≡ cp[j] = i ∧ ¬c[j] . (10)

Finally, send() is a procedure for the message sending. This procedure is also
called by a programmer from recv() procedure. The procedure sends a message
j to the actor i:

send(i, j) ≡ cp′[j] = i ∧ c′[j] . (11)

The following C++ code fragment is a part of the language runtime library.

struct engine{ std::vector<chan*> ready;};// engine

struct proc{ void(*recv)(chan*, proc*);};// actor/process objects

struct chan{ proc*p; bool sending;};// message/channel objects

inline void send(engine*e, chan*c, proc*p){

if (c->sending) return;

c->sending = true;

c->p = p;

e->ready.push_back(c);

}

inline bool access(chan*c, proc*p){

return c->p == p && !c->sending;

}

inline void run(engine*e){

size_t rsize;

while (rsize = e->ready.size()){

int n = rand() % rsize; auto it = e->ready.begin() + n;

chan*c = *it; e->ready.erase(it); c->sending = false;

c->p->recv(c, c->p);

}

}

This runtime library is used to simulate concurrent execution on a single pro-
cessor. The call to C++ library function rand() is used to randomize a program
behaviors. The library is a debug implementation of the specification (7). The
library code is located in the file cpp11runtime/lib/dbg/tet.h. We also have
a runtime support for effective sequential execution (.../seq/tet.h), parallel
multithreaded execution (.../par/tet.h), and speedup prediction using dis-
crete event simulation (.../sim/tet.h) in the cpp11runtime repository. These
runtimes are also implementations of the model (7).

5 Binding Between Runtime and Application Code

The direct use of the runtime library may be difficult for the following reasons:
(a) the relation of formula (1) between a variable and its control object (actor
or message) should be syntactically supported; (b) every read/write operation
with message variable should be preceded by access() call (10); (c) the code
should present entities in the application domain. The Templet preprocessor was
implemented to solve these problems. It performs the synthesis of the required
additional code.

The current preprocessor implementation uses special comments to separate
the three parts: DSL commands, manually written code, and automatically gen-
erated code. The DSL commands are used to define properties of actors and
messages. Actors and message are entities of corresponding C++ classes.

For example, DSL command *actor. inside the comments

/*TETtemplet$!templet!*/

/* *actor. */

/*TET*/

means, that the preprocessor should generate a C++ class actor with actor
behavior. The fragment of this class is shown below.

class actor:public TEMPLET_DBG::Process{

/*TETactor$!userdata!*/

double some_user_defined_variable;

/*TET*/

};

The generated fragment has an extension point, where the user can add
his/her own manually written code. The extension point in the example above is
between the marks /*TETactor$!userdata!*/ and /*$TET$*/. The automat-
ically generated code also includes calls to runtime library functions access()

and send() inside overloaded recv() method. This code is omitted here for the
reason of its complexity. A programmer can change both DSL commands and
code inside the extension points. The preprocessor re-synthesizes code, keeping
isomorphism between DSL specification and the generated C++ code.

6 Templet DSL Syntax Example

A more realistic example of actor and channel definitions in Templet DSL from
cpp11runtime/samples/templet is shown below.

~Link=

+ Begin ? argSin2 -> Calc | argCos2 -> Calc;

Calc ! result -> End;

End.

*Parent=

p1 : Link ! result -> join;

p2 : Link ! result -> join;

+ fork(p1!argCos2, p2!argSin2);

join(p1?result, p2?result).

*Child=

p : Link ? argCos2 -> calcCos2 | argSin2 -> calcSin2;

calcCos2(p?argCos2,p!result);

calcSin2(p?argSin2,p!result).

This DSL code defines a program that tests for the correctness of the sin2 x+
cos2 x = 1 identity. The generated program calculates sin2x and cos2 x concur-
rently in two Child actors, while the Parent actor coordinates them. The channel
Link controls an order of message (argSin2, argCos2, result) exchange.

After the DSL difinition a programmer has to code extension points in C++
language. The DSL fragment above implies the following extension points: (a)
definifions of argSin2, argCos2, result message structures; (b) definitions of
fork, join, calcCos2 and calcSin2 C++ class methods; (c) possibly definitions
of Parent and Child C++ class data members. Finally, a programmer creates
actors as the Parent class and the Child class entities and connects the actors
with the Link class entities. This C++ code is trivial and does not require a
knowledge in the field of concurrent programming. The DSL syntax explanation
can be found in [8].

7 Applications Overview

The cpp11runtime package provides another three samples to illustrate the prac-
tical use of the Templet language. The Gauss-Seidel method for solving the
Laplace equation is located in the samples/pipeline directory. This example
illustrates the use of the language in the field of scientific computing. It also
shows how the simulation runtime can help to predict program performance
without an explicit mathematical model or real parallel execution.

An example from the field of linear algebra is located in the samples/ringmult
directory. This is an illustration of distributed matrix multiplication algorithm.
Our implementation of the actor model is well suited for specifying computations
both for shared and distributed mamory architectures.

The business process model example is located in the samples/order direc-
tory. The Templet language can be used to model and analyze concurrency in
non-technical systems, for example, in the area of business process modeling. We
studied a business scenario written in a human language and composed a formal
specification for the scenario in the Templet language. The static type analysis,
debugging, and testing of the program were used to verify the correctness of
the specification. In particular, we compared programmatically generated event
sequences with expected sequences for the studied business process. This exam-
ple illustrates that in our approach much of model verification is done by C++
compiler and Templet runtime.

8 Conclusion

Our research shows a practical interest of the DSL-based approach for concur-
rent programming. This approach is based on specification of an actor-oriented
runtime with Lamport’s TLA formalism. We got a fully working but relatively
simple implementation of the Template language for programming in shared
memory architectures. In the future, we plan to extend the tool for distributed
programming, multiple languages support, and semantic analysis of the DSL.
The language has been deployed online at http://templet.ssau.ru/templet as a
part of scientific computing web service.

References

1. Ward, M.P.: Language-oriented programming. Software-Concepts and toolkits
15(4), 147–161 (1994

2. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artifi-
cial intelligence. Proceedings of the 3rd international joint conference on Artificial
intelligence, pp. 235–245 (1973)
)

3. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-
level structured parallel programming enablers. Software: Practice and Experience
40(12), 1135–1160 (2010)

4. Hoare, C.: Communicating sequential processes. In: The origin of concurrent pro-
gramming, pp. 413–443. Springer (2002)

5. Wirth, N.: The programming language Oberon. Software: Practice and Experience
18(7), 671–690 (1988)

6. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
Software, IEEE 20(5), 36–41 (2003)

7. Lamport, L.: The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems 16 (3), 872–923 (1994)

8. Vostokin, S.: Templet: a markup language for concurrent programming. arXiv
preprint arXiv:1412.0981 (2014)

