
Templet Web: The Experimental Use
 of Volunteer Computing Approach in Scientific

Platform-as-a-Service Implementation

Sergei Vostokin, Yuriy Artamonov, and Danil Tsarev

Samara University, Samara, Russia
vostokin_sv@ssau.ru

Abstract. This article presents the Templet Web cloud
service. The service is designed for high-performance
scientific computing automation. The use of high-
performance technology is specifically required by new
fields of computational science such as data mining,
artificial intelligence, machine learning, and others.
Cloud technologies provide a significant cost reduction
for high-performance scientific applications. The main
objectives to achieve this cost reduction in the Templet
Web service design are: (1) the implementation of "on-
demand" access; (2) source code deployment management;
(3) high-performance computing programs development
automation. The distinctive feature of the service is
the approach mainly used in the field of volunteer
computing, when a person who has access to the computer
system delegates his access rights to the requesting
user. We developed an access procedure, algorithms, and
software for utilization of free computational resources
of the academic cluster system in line with the methods
of volunteer computing. The Templet Web service has been
in operation for five years. It has been successfully
used for conducting laboratory workshops and solving
research problems, some of which are considered in this
article. The article also provides an overview of
research directions related to the service development.

Keywords. Cloud Computing, Platform as a Service,
Volunteer Computing, Scientific Computing, Automatic
Parallel Programming, Cluster Computing

1 Introduction

Modern mathematical modeling is based on numerical methods. Of all the numeri-
cal methods, the methods that are implemented exclusively in high-performance com-

mailto:vostokin_sv@ssau.ru

puting systems are becoming increasingly popular. Thus, the development of data
mining or deep machine learning is fundamentally impossible without the use of high-
performance technology. Moreover, rejecting high-performance parallel computing
when sequential computing may be implemented can lead to incorrect results. For
example, it is possible to get an incomplete study of a model's parametric space; to get
an incorrect conclusion about the properties, adequacy and boundaries of the applica-
bility of the model to the studied object.

Despite the affordability and widespread use of high-performance computing
hardware, such as multi-core processors, general-purpose GPUs, and cluster-based
systems, the developers of numerical models often implement the models in the form
of a traditional sequential program. We may presuppose the following three reasons
for this limited use of high-performance computing.

Firstly, it is important to access high-performance resources "on demand" in low-
budget projects, preliminary studies, or training. At the same time, the access to high-
performance academic systems is usually associated with bureaucratic procedures and
is not implemented remotely via the Internet. The offline access registration entails
financial costs and time loss when renting computing power.

Secondly, the usual form of access to computing resources for the high-
performance computing industry is terminal access over a secure channel based on
SSH protocols. Along with great flexibility, which is an advantage for a system pro-
grammer, this form of access is inconvenient for a mathematician. It requires him to
master the skills of system administration that are not typical professional skills for a
numerical modeling expert. This leads to an increase in the expenditure of time and
finances for the organization of calculations on the model.

Finally, an equally important problem is the development of a parallel program for
a numerical algorithm. The traditional form of the representation of a numerical algo-
rithm is a sequential program representation. This algorithmic representation is natu-
ral for the mathematician. However, at present, the theory of compilation gives no
universal methods of transforming the algorithmic representation into binary code
suitable for practical use in high-performance systems. Therefore, modern tools for
the development of high-performance computing programs require an explicit de-
scription of simultaneously performed calculations and taking into account the hard-
ware features of the computing equipment. The study of programming tools and
equipment features involves time and financial costs.

Modern mathematical modeling is used primarily for applied problems. Thus, re-
duction of the financial and time cost factors for setting up experiments with the mod-
els is practically important. In this regard, the motivation for our research in cloud
computing service development is the problem of complex automation. The aim of
automation is to reduce the negative role of factors considered above. This automation
includes: (1) the automation of the access procedure for a high-performance system;
(2) the automation of program deployment (code upload, building, starting, and con-
trol of the program execution, downloading the results); (3) automatic parallel pro-
gramming for high-performance computing systems.

2 Research Methods

Development and maintenance of a service with the requirements stated above are
associated with solving many technical and scientific problems. The core of our strat-
egy of providing access to a remote computing system is the concept of volunteer
computing [2]. The donors of computing resources in our system are academic cluster
account holders. The system is implemented as PaaS (platform as a service) cloud
service [3]. In this approach, the infrastructure that implements and provides the ser-
vice is completely hidden from the user, and it is possible to work with the service
using just a web browser.

The specifics of access to computing resources lead us to the need of solving the
problem of forecasting the computational load of the cluster. A user who provides the
access to a cluster should know the periods when the access can be granted without
compromising his/her own projects and the overall cluster load. At the same time, a
user who gets the access needs to know when the effective work on the cluster will be
possible. In order to solve this problem, mathematical methods of forecasting and data
mining are used [4, 5].

Automation of parallel programming in our service is based on the concept of algo-
rithmic skeletons [6, 7]. This method implies the storage of a set of frameworks for
controlling parallel computations. The frameworks can be extended with sequential
code for a task. To specify the semantics of parallel execution for the algorithmic
skeletons, we apply the version of the actor model [8] and define the model in the
temporal logic of actions [9]. The syntax of skeletons is developed according to the
language-oriented programming approach [10], considering the maximum compatibil-
ity with development environments and tools that are traditional for high-performance
computing (C ++, OpenMP, MPI).

Below we consider the technologies developed and tested in the service, statistical
data on its functioning, and numerical modeling tasks solved with the help of it. In
conclusion, the results of service development are summarized.

3 On-demand Access to Academic Cluster

Our service uses the idea of volunteer computing to access a remote computer sys-
tem. A Volunteer is a person who has an account on a remote system accessible via
the SSH protocol. A Consumer is a person who does not have an account on the re-
mote system, but wants to use the Volunteer’s account. To run the Consumer’s pro-
gram through the Volunteer’s account, our service implements the following protocol:

- Consumer submits the program source code and input data to Volunteer;
- Volunteer runs the program on his/her own behalf on the remote system;
- Volunteer returns result of the run to Consumer.
The system acts as a broker and assumes the following obligations:
- storing of source code, data and the result of computations for mutual audit

of Consumers and Volunteers actions;
- organizing the access to this information by both Volunteer and Consumer;

- multiplexing access for many Consumers to the same Volunteer account.
Each Consumer can interact with an arbitrary number of Volunteers; each Volun-

teer can simultaneously provide access to his remote system for an arbitrary number
of Consumers. The roles of the Consumer and the Volunteer can be entitled to one
and the same person.

Unlike the traditional BOINC [11] volunteer computing middleware, in our im-
plementation, multiplexing is used when connecting to Volunteer, not to Consumer. It
is also assumed that the Volunteer gives access to a multitasking system (for instance,
batch system).

Thus, if Volunteer trusts Consumer and knows his identifier in our system, he can
immediately grant access to the Consumer.

4 Deployment Automation

Three entities are involved in managing the deployment of user programs on a
cluster: Task, Template, and Environment.

A Task is the main entity of the system. The attributes of a task are the code of the
Customer program, the input data, the output data and the execution status. The Task
is generated from the Template.

Each Template contains sample code that users can adapt to their algorithm; the
script that controls the assembly of the Task on the Volunteer system; there are also a
start script and the script for downloading the results. Any Template can be used to
create many Tasks. Each Task is related to one Template.

Task is performed in an Environment. Each Environment contains information for
connecting to the Volunteer system. Environment implements the life cycle of Tasks
in Volunteer system. Specific operations of the life cycle are defined in the Template.
For example, Environment defines the moment when the program is started on the
Volunteer system and runs the build.sh script specified in the Template.

The system has additional entities that are used to manage access rights and im-
plement collaboration scenarios. The main scenarios include the work of a student
group and the work of a research group on a cluster. You can grant access to one or
more computing clusters to a group of students and monitor their work. The students
can perform individual or group projects. The working in a project can be conducted
using the browser or a version control system.

5 Automatic Parallel Programming

Let us demonstrate automatic parallel programming in our system using the exam-
ple of a computation by the master-workers scheme. This scheme is typical for volun-
teer computations in BOINC. When you create Tasks from the master-workers Tem-
plate, the user is given the following code sample (some details are omitted).

struct task{/*-to be filled by the user-*/};
struct result{/*-to be filled by the user-*/};

struct bag{
 bool get(task*t){/*-to be filled by the user-*/}
 void put(result*r){/*-to be filled by the user-*/}
/*-to be filled by the user-*/
};
void proc(task*t,result*r){/*-to be filled by the user-
*/}
int main(int argc, char* argv[])
{
 bag b;
 /*-to be filled by the user-*/
 b.run();
 /*-to be filled by the user-*/
 return EXIT_SUCCESS;
}

Here, struct task is the input data of the task; struct result is the result of the calcu-
lation of the task; proc is the procedure for calculating the task performed by the
workflow; struct bag is a state and methods of the master process; get is a method for
creating a new task or informing that there are no tasks; put is a method for recording
the result of calculating a task in a master process.

The user fills in the parts marked with the comment /*-to be filled by the user -*/,
with his/her sequential code. The resulting skeleton can be compiled and checked for
syntactical correctness in the usual way. The algorithm for converting the skeleton
into executable code for volunteer system architecture is contained in Template. The
system implements the conversion of this skeleton into the code to be executed in the
shared memory using OpenMP and into the code for distributed execution using MPI
[12].

The master-workers skeleton can be used to prototype the applications for the
BOINC platform. Note that the integration of BOINC with cluster systems was stud-
ied earlier in the CluBORun project [13, 14]. In the future, it is possible to run master-
workers applications from our system to the BOINC network, if we consider the
BOINC control node as special type of Volunteer system.

Other skeletons, for example pipeline, are also implemented in our system. Our
system has a DSL-based constructor for developing skeletons in the form of actor
networks.

6 Results of Service Operation

The Templet Web service is deployed in the private cloud of the Supercomputer
Center of Samara University [15]. The service is used for teaching students high-
performance programming, for automatic parallel programming technologies re-
search, and for solving applied problems using numerical algorithms [16].

Most users are bachelor's and master's degree students. Students act as the Con-
sumers of the service. Teachers who have accounts on the "Sergey Korolev" cluster

act as the Volunteers providing resources for temporary access. The dynamics of user
growth is shown in Table 1.

Table 1. The dynamics of Templet Web user growth.

Year Total in the period Accumulated total
2013-2015 212 212
2016 63 278
2017 (first six months) 88 366

Table 2 shows the number of tasks running on the "Sergey Korolev" cluster during

the period of operation of the Templet Web system. This number of tasks is multi-
plexed through three accounts on the cluster and one account on a test low-power
Linux system.

Table 2. The number of task runs on Templet Web system.

Year Total in the period Accumulated total
2013-2015 141 141
2016 2597 2738
2017 (first six months) 1308 4046

Users develop tasks in projects. The project allows you to control access to Envi-

ronments and Tasks for a group of users. Table 3 shows the dynamics of creating
projects in the system.

Table 3. The dynamics of creating projects in Templet Web system.

Year Total in the period Accumulated total
2013-2015 153 153
2016 126 279
2017 (first six months) 237 516

In 2016, the function of editing code in a web browser was added to the system. As

you can see from Tables 2-4, this function is in demand among users and increased
the intensity of Templet Web usage. Projects are basically created with the ability to
edit the code in the browser.

Table 4. The number of Templet Web projects managed exclusively in browser.

Year Total in the period Accumulated total
2013-2015 0 0
2016 97 97
2017 (first six months) 226 323

The system includes a universal skeleton constructor based on the Templet markup
language [8]. The source code for the skeleton constructor and examples of its use are
available online [17].

An important part of the service is the subsystem for monitoring and forecasting
the load of the "Sergey Korolev" cluster. It implements a 12-hour forecast of changing
the cluster load, calculated by various mathematical methods: maximum likelihood
method [18], neural networks [19], an adaptive combination of the listed methods
[20]. The forecasting system is implemented using the microservice approach [21].

We use Templet Web system to solve problems in modeling the dynamics of space
vehicles. The study of dynamics includes the numerical solution of the equations of
spacecraft motion with different initial conditions, the construction of phase trajecto-
ries and Poincaré maps. The aim of the study is to identify chaotic processes and un-
stable modes in operation of the spacecraft orientation systems. This class of models
is realized by the above-described scheme of master-workers calculations [22].

In this project, we also examined the applicability of the master-workers scheme to
parallel algorithms implementation for training neural networks with the selection of
the optimal structure of neurons in hidden layers [23]. A program for parallel contin-
uous wavelet transform has been developed in the course of the study of the problem
of analysis of acoustic signals from a cutting tool [24].

7 Conclusion

The experience we have gained from the development and operation of the Tem-
plet Web system shows the practical importance of a comprehensive approach to
automating high-performance computing in mathematical modeling. This approach
includes the automation of programming, on-demand access to resources and the
automation of deployment. The PaaS implementation of the Templet Web system is
accessible through a standard web browser. This design significantly reduced the
complexity of a cluster system for users and led to an increase of cluster usage. The
technology of providing access to the computer system by the principles of volunteer
computing has made it possible to simplify cluster administration considerably in the
organization of the educational process using the resources of the Supercomputer
Center of Samara University.

Acknowledgments. This work is partially supported by the Russian Foundation

for Basic Research (RFBR#15-08-05934-A), and by the Ministry of Education and
Science of the Russian Federation in the framework of the State Assignments pro-
gram (№ 9.1616.2017/ПЧ).

References

1. The Templet Project. http://templet.ssau.ru/
2. W.T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson. A new

major SETI project based on Project Serendip data and 100,000 personal computers. Inter-
national Astronomical Union Colloquium, vol. 161, pp. 729–734, Jan. 1997.

3. P. M. Mell and T. Grance. The NIST definition of cloud computing, 2011.
4. J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques. Elsevier, 2011.
5. S. Makridakis, S.C. Wheelwright, and R.J. Hyndman. Forecasting: Methods and Applica-

tions, Third edition. John Wiley and Sons, 1998.
6. M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel

programming, Parallel Computing, vol. 30, no. 3, pp. 389–406, Mar. 2004.
7. H. González-Vélez and M. Leyton. A survey of algorithmic skeleton frameworks: high-

level structured parallel programming enablers. Software: Practice and Experience, vol. 40,
no. 12, pp. 1135–1160, Nov. 2010.

8. S.V. Vostokin. Templet: a markup language for concurrent actor-oriented programming.
CEUR Workshop Proceedings, 2016. vol. 1638. pp. 460-468.

9. L. Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems. 1994. vol. 16 (3). pp. 872–923.

10. M.P. Ward. Language-oriented programming. Software-Concepts and toolkits. 1994. vol.
15(4). pp.147–161.

11. D. P. Anderson. Boinc: A system for public-resource computing and storage. In Grid
Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on, pages 4–10.
IEEE, 2004.

12. S.V. Vostokin, D.A. Tsarev. Skeletal software deployment technology to automate the cal-
culations on a supercomputer Sergey Korolev. In Advanced information technologies and
scientific computing (PIT-2017): proceedings of the international scientific conference /
ed. S.A. Prokhorov, Russia, Samara: Samara Scientific Center of RAS, 2017. рр 481-484.

13. A.P. Afanasiev, et al. Technology for integrating idle computing cluster resources into
volunteer computing projects. Proc. of The 5th International Workshop on Computer Sci-
ence and Engineering, Moscow, Russia. 2015.

14. O. Zaikin, M. Manzyuk, S. Kochemazov, I. Bychkov, and A. Semenov. A volunteer-
computing-based grid architecture incorporating idle resources of computational clusters.
In International Conference on Numerical Analysis and Its Applications, pp. 769-776.
Springer, Cham, 2016.

15. Supercomputing Center of Samara University. Templet Web. http://hpc.ssau.ru/node/3130
16. Y. S. Artamonov, S.V. Vostokin The use of cloud services Templet Web in conducting

laboratory workshops on the supercomputer "Sergey Korolev". In Proc. of Х Int. Scientific
and practical conference Modern information technologies and IT education, MSU, Mos-
cow, 2015. vol 2. - pp. 409-414.

17. The Templet Markup Language: a tool for concurrent, actor-oriented, skeleton program-
ming. https://github.com/templet-language

18. Y.S. Artamonov. Using the EMMSP model to predict the available computing resources in
the cluster systems. Proceedings of the Samara Scientific Center of the Russian Academy
of Sciences, vol. 18, № 4(4), 2016. pp.681-687.

19. Y.S. Artamonov. Prediction of cluster system load using artificial neural networks. In
Proc. of ITNT-2017, Samara, 2017.

20. Y.S. Artamonov. Prediction of cluster system load using adaptive model mixture. Interna-
tional Journal of Open Information Technologies 5.5 (2017): 9-15.

21. Y.S. Artamonov, S.V. Vostokin. Development of distributed applications for data collec-
tion and analysis on the basis of a microservice architecture. Proceedings of the Samara
Scientific Center of the Russian Academy of Sciences, vol. 18, № 4(4), 2016. pp.688-693.

22. S.V. Vostokin, A.V. Doroshin, Y.S. Artamonov. Application of the Templet Web system
to solve problems of mathematical modeling using high-performance systems. In Collected
Works of the XVIII All-Russian Seminar on Motion Control and Navigation of Aircraft:

Part II. Samara, 15-17 June 2015 - Samara, Samara Science Center of RAS, 2016. pp.17-
21.

23. V.G. Litvinov. Development and application of the computational model for skeleton solu-
tions. Case study – using “bag-of-task” for HRBF neural network learning, Vestn. Samar.
Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. & Math.
Sci.], 2014, no. 3 (36), pp. 183–195.

24. A.A. Stolbova, S.V. Vostokin, S.N. Popov. Calculation of coefficients of wavelet trans-
form on cluster systems. Advanced information technologies and scientific computing
(PIT 2017): proceedings of the international scientific conference, ed. S.A. Prokhorov,
Russia, Samara: Samara Scientific Center of RAS, 2017. рр 476-478.

	1 Introduction
	2 Research Methods
	3 On-demand Access to Academic Cluster
	4 Deployment Automation
	5 Automatic Parallel Programming
	6 Results of Service Operation
	7 Conclusion
	References

