
Building an Algorithmic Skeleton for Block Data

Processing on Enterprise Desktop Grids*

 Sergei Vostokin [0000-0001-8106-6893] and Irina Bobyleva [0000-0001-5660-3503]

Samara National Research University,

Samara, Russia

easts@mail.ru, ikazakova90@gmail.com

Abstract. The paper presents a method for building an algorithmic skeleton and

automation of the pairwise processing of block data on enterprise desktop grid

computing environment. The automation is based on the principle of the round-

robin (each with each) tournament. The semantics of calculations and decompo-

sition of the algorithmic skeleton into sequential subprograms using the model of

actors is given. A graphical notation explaining the relationship between the ele-

ments of the algorithmic skeleton is introduced. The applicability of the method

was studied on block sorting of a large data set.

Keywords: Actor model·Enterprise desktop grid·Round-robin tourna-

ment·Block sort·Algorithmic skeleton

1 Introduction

The desktop computer grids have long and successful history of usage in the field of

scientific computing, both on the Internet and on the scale of enterprises. The main

reason why the desktop grids are in wide use is the radical reduction of the computa-

tional cost. The grids built on desktop computers (broadly, on any personal computing

systems: smartphones, tablets, laptops, etc.) makes it possible to use a large amount of

devices on the Internet for your computations with a consent of the devices owners. In

many cases, that is more convenient and cheaper than using cluster or supercomputer.

The use of temporarily idle (for example at night hours) equipment of the enterprise is

another alternative solution for cheaper computations.

While hardware costs are reduced, programming costs begin to play an important

role in the overall cost of grid computing. The costs remain low, while desktop grids

are used to implement simple search or brute force strategies with massive parallelism.

This is due to the fact that such problems are native to desktop grids. The problems are

easy to program with the desktop grid APIs. Also there are ready to use algorithmic

skeletons [1] of the MAP type (when an operation is applied to all elements of data set

* Supported by the Ministry of Education and Science of the Russian Federation in the frame-

work of the State Assignments program (#9.1616.2017/4.6).

mailto:easts@mail.ru

in parallel) in which the general management of calculations is already implemented

[2]. The researcher only needs to define algorithms for the tasks to be solved on the

desktop computer grid.

However, as communication and computing equipment improves, the use of desktop

grid systems for solving computational problems with more complex control (compared

to massively parallel control) becomes relevant. For example, these may be complex

data analysis tasks. An enterprise can accumulate data during the day and process it on

idle computers at night.

In the research we propose a method and apply it to build an algorithmic skeleton

for automation of calculations on desktop grid systems. The skeleton is designed to

simplify the programming of pairwise processing of data blocks. This processing is

similar to the round-robin sport tournament, where teams play with each other. This

type of processing can be used for sorting, constructing frequency distributions, and

solving similar problems.

The article has the following structure. Firstly, based on the model of actors and a

special graphical notation, generalized description of the parallel computing semantics

in the desktop grid is created. The description follows the principles of top-bottom de-

composition of algorithms for the grid systems and allows one to define data types and

sequential procedures for a specific parallel algorithm. Secondly, we specify the de-

scription of the data types and procedures by defining the well known algorithmic skel-

eton called bag of tasks. In turn, we present a new skeleton called asynchronous round-

robin tournament. The skeleton is built on the basis of the bag of tasks skeleton. Finally,

the applicability of the asynchronous round-robin tournament skeleton is studied ex-

perimentally. Using a cluster model of enterprise’s desktop grid environment, we im-

plement and test block sorting application for large data arrays and make a conclusion

about possible speedup of data processing in real enterprise grid systems.

2 Related Work

The most common systems for distributing calculations across the desktop grid are

Condor [3], BOINC [4], XtremWeb [5], OurGrid [6]. These systems can be imple-

mented at various scales, ranging from office or laboratory to all the world [7]. The

characteristics and classification of desktop computer grids are given in [8, 9].

The desktop computer grids can be used not only in the interests of science, but also

in the interests of various enterprises. Not all grid systems can really be effectively

applied within the local network of an enterprise, since some of them can solve only a

narrow class of problems and require a high-speed and uninterrupted connection be-

tween elements of the system, which is not always possible. But the solution of this

issue and systems capable of working in the network of an enterprise are considered in

[10]. Task scheduling techniques can also be used to minimize server load and optimize

the desktop grid efficiency [11].

The model presented in the paper is based on the actor model — a model of parallel

computation proposed by Carl Hewitt in 1973. Since its inception, it has been actively

explored and applied to solve various problems. In the article [12], the authors de-

scribed in detail all the basic properties of the model of actors, as well as the entire

history of its changes over the past time. We also use the bag of tasks model of compu-

tations. The authors set forth in detail the bag of tasks model and presented the results

of a number of experiments on its application in [13].

In experimental research, we considered a cluster as a model for the desktop grid.

The use of a computing cluster as a desktop grid was also studied in [14, 15].

In the article we provide a point of view on actor model and its application in the

context of building algorithmic skeletons [1] for the desktop grids controlled by Everest

platform [16] which we consider relevant.

3 The Actor Model of Algorithmic Skeletons for Desktop Grid

Applications

From a general point of view, the desktop grid calculations are organized according to

the master-workers scheme. The master process coordinates the work of connected

worker processes. The master and workers processes form communication graph with

a star topology. Let's build an actor model of the master-workers scheme. For this, we

use a special graphical notation for the actor's semantics of execution.

The master class is shown in Fig. 1a. The master process simulates the work of the

controlling process or the orchestrator of the desktop grid.

Fig. 1. The master and the worker: a) the master; b) the worker; c) the interaction of master

and workers.

Fig. 1a means that objects of type master can receive messages of type message in

the port. In C ++ programming language, this can be encoded as follows: struct mes-

sage{..}; struct master{void port_handler(message&m){..}..};.

The class of worker processes is shown in Fig. 1a. This class simulates the work of

a desktop computer connected to the grid.

The notation in Fig. 1b is interpreted according to the following description. The

worker process can receive messages of type message on port named port. Additionally,

an instance of the message type is associated with each worker instance. The circle

inside the worker process symbol means a handler with the name worker::start. This is

a system message handler. The message arrives at the beginning of the calculation. In

C++, this can be encoded as follows: struct worker{ void port_handler(mes-

sage&m){..}; message port; void start(){..}..};.

The behavior of message objects and the order of calls to message handlers *_han-

dler is based on the actor’s semantics of execution. The message object can be in two

states: (a) in the state of interconnection with some actor object; (b) in the state of de-

livery to port of some actor object. At the time of delivery, the message handler *_han-

dler is activated. The actor may have a special message handler named start. The start

handler is activated at the beginning of the calculations.

There are rules for accessing actor variables and messages from message handlers.

Access to variables of the actor object for which the handler is called is allowed. Access

to variables of the message object being in the state of interconnection with the actor to

which the handler is called is also allowed.

Two primitive operations are available for managing messages in the context of the

* _handler and start handlers: access() and send(). The access operation is used to

check the availability of the message. Checking the availability of a message means

asking the runtime system whether the message is in a state of interconnection with the

actor object or not. The m.send() operation is used to send a message m to a port of

some actor. The m.send() call is allowed if you have an access to the message m (the

access(m) call returns true). After the execution of m.send() the access is lost until the

completion of the current handler. When the handler is activated, the message m trans-

mitted as a handler void *_handler(message&m) parameter is available (the access(m)

call returns true). The runtime ensures that the message m is eventually delivered after

the execution of m.send() operation, but no assumptions are made about the message

delivery sequence.

A message object is used for communication between a pair of actor objects. For this

purpose the link between two actor’s ports are established. The links are shown on Fig.

1c. In the model of calculations on the desktop grid, one master actor is associated with

N instances of the worker actors. In C++, links are encoded as follows: struct mas-

ter{void port(message&){..}..}; struct worker{message port;..}; master a_master;

worker a_worker; a_master.port(a_worker.port);.

At the initial moment, the message is available in the actor where the message was

declared. In Fig. 1c, these are actors of worker type. The message is then used to request

the port of another associated actor. In Fig. 1c, this is a master actor. After processing,

the same message object is used for the response. The interaction can be repeated many

times. Thus, the client-server interaction between actors is implemented.

Our goal is to develop an algorithmic skeleton, which is a specialization of the model

in Fig. 1c. Therefore, we will further need to define the following types: message, mas-

ter, and worker. Also we will need to define a message handlers master::port_handler,

worker::port_handler, and worker::start associated with the listed types. The definition

is given in the next two sections.

4 Specification of Bag-of-Tasks Skeleton

Let's further clarify the computation model for the desktop grid system. To solve an

applied problem, the user defines the following parts of the code. He defines the state

of the master process – struct bag{..}; the state of a task – struct task{..}; the function

that tests for the presence of a task – bool test(bag&); the function that gets a new task

– void get(task&,bag&){..}; the function that processes a task – void proc(task&){..};

the function that puts the results of calculations in the state of the master process – void

put(task&,bag&). The interaction of the listed functions can be described in the form

of sequential C++ code as follows: bag b; task t; while(test(b)){ get(t,b); proc(t);

put(t,b); }.

The algorithmic skeleton that takes the listed types and functions as parameters is

usually called the bag of tasks. Having a previously defined general model of compu-

tations on the desktop grid, now we can define the bag of tasks skeleton.

The bag will be a part of the master actor state: struct master{bag b;..}; the task will

be a part of the message state: struct message{task t;..}. When processing a message, it

is necessary to determine whether the result of the previous calculation is delivered in

it. To do this, we introduce the flag: struct message{bool is_first;..}. When sending

messages from a worker to the master at the beginning of calculations, the flag of the

first message is set to true: void worker::start(){port.is_first=true; port.send();}. When

a response is received from the master, the task transferred to the worker is processed:

void worker::port_handler(message&m){proc(m.t); m.send();}. The result of the pro-

cessing is sent in a reply message. This is where the worker description is complete.

To describe the behavior of the master process, it is required to keep a list of pointers

to messages from workers waiting for the task: struct master{list<message*> wait;..}.

The message processing method in the master process is performed in 3 consecutive

steps: void master::port_handler(message&m){Step_1;Step_2;Step_3;}.

Step 1. We put the results of processing the message (m) into the state (b) of the bag,

and the pointer to the message into the wait queue: if(m.is_first) m.is_first=false; else

put(m.t,b); wait.push_back(&m);. Notice that the first message from the worker does

not contain the result of task calculation and is not processed in the put().

Step 2. We issue tasks from the bag for processing by the waiting workers:

while(!wait.empty() && test(b)){message*m=wait.back(); wait.pop_back(); get(m->t,

b); m->send();}.

Step 3. We check the completion of calculations: if(wait.size()==N) stop();. Calcu-

lations are completed if all workers are waiting for tasks. N is the number of worker

processes in Fig. 1c.

Thus, we defined the semantics of the algorithmic skeleton called BOT (bag of tasks)

as a higher order function on types and ordinary functions: BOT<struct bag; struct

task; bool test(bag&); void get(task&,bag&); void proc(task&); void

put(task&,bag&)>.

5 Specification of Asynchronous Round-Robin Tournament

Skeleton

Having the definition of the bag of task skeleton, we can define more specialized skel-

eton for pairwise processing of data blocks. We call this skeleton the asynchronous

round-robin tournament: ART<void prepare(int team); void play(int team_i, int

team_j)>. The functionality of the skeleton can be represented as the organization of a

sports circular tournament, in which M teams participate. Each team plays with each

other team. In this case, the total number of games played is 𝑀(𝑀 − 1) 2⁄ . You cannot

simultaneously assign a team to play with more than one rival team. Additional re-

strictions with the required properties of the tournament may be imposed. However, we

expect that these restrictions do not change in time depending on the results of already

played games.

For example, a plan of a tournament in the form of a sequence of games can be

written as a program in C++:

for (int i = 0; i < M; i++) prepare(i); (1)

for (int i = 1; i < M; i++) for (int j = 0; j < i; j++) play(j, i);

For an asynchronous parallel tournament plan, a directed acyclic graph (DAG) is

required. This graph determines for every game after which games this game is played.

It can be shown that it is enough to track only two games preceding the play(i,j) of the

game: namely a game in which ith team played, and a game in which jth team played.

Then the rules of an asynchronous tournament in the form of an oriented acyclic de-

pendency graph of its tasks can be encoded with the two matrices of size 𝑀 ×𝑀 (int

I1[M][M]; int I2[M][M];) as shown in Fig. 2.

Fig. 2. Coding the task dependencies of an asynchronous round-robin tournament.

Game plays for which the play(i,j) is the previous one can be defined as play(I1[j][i],

I1[i][j]) and play (I2[j][i], I2[i][j]), where I1 and I2 are matrices of size 𝑀 ×𝑀. If the

play(i, j) of a game (i, j) does not have dependent games or has only one such game,

then the unused elements of the matrices I1 and I2 contain special value: const int NA

= -1; .

Using the matrices I1 and I2, the auxiliary matrix int S[M][2] is calculated. This

matrix encodes the play(S[i][0], S[i][1]), immediately following the preparation pre-

pare(i) of the ith command.

Let’s consider the variables needed to track the current state of the tournament. The

int D[M][M] matrix stores the number of unplayed games D[i][j] preceding the play(i,

j) directly. The list<pair<int,int>> games; contains games (play operations) or prepa-

rations to the games (prepare operations) that are not yet assigned to run. To distinguish

the preparation from the play in the list of games, a special value NA is recorded in the

second element of the pair <int, int>.

The above description of the state and methods of BOT skeleton from Section 4

allow us to determine the state and methods of the ART skeleton (asynchronous round-

robin tournament) as follows.

The bag state is supplemented by the following data fields: struct bag{int D[M][M];

list<pair<int,int>> games; int I1[M][M]; int I2[M][M]; int S[M][2];}. Matrices I1,

I2, and S are filled at the beginning and do not change during the calculations. The

matrix S is trivially calculated from the matrices I1 and I2. The list of games is initially

filled according to the C++ code: for(int i = 0; i < M; i++) {pair<int,int> p(i, NA);

games.push_back(p);}. The task state is defined as struct task{int i; int j;}. Data fields

of the structure correspond to play(i, j) for j ≠ NA and prepare(i) for j = NA.

The code for checking whether a task is present in the current state of the bag is bool

test(bag&b){return !b.games.empty();}.There are tasks for the processing if the games

list is not empty.

The task retrieval code is void get(task&t,bag&b){pair<int,int>p=b.games.back();

b.games.pop_back(); t.i=p.first;t.j=p.second;}. It means taking the last element of the

list of games as a task.

The task processing code is void proc(task&t){if(t.j==NA) prepare(i); else

play(t.i,t.j);}. It means performing a user-defined prepare or play procedure.

The code for calculating the next tasks at completion of the task t implements the

following idea of adding tasks to the games list. When a prepare task has completed, it

affects the launch of one play task. When a play task has completed, it can affect the

launch of one or two play tasks. The tasks that can be performed at the completion of a

current task are found by the matrices I1, I2, S. The value of the counter D decreases

for the tasks that can be potentially performed. If the counter has reached zero, then the

task stop waiting for the completion of the previous tasks and is planned by adding on

the games list.

The procedure of getting the matrices I1 and I2 for a tournament with given proper-

ties is not discussed in detail here. We only note that in the experimental study described

below we used the following procedure. First, a sequence of tournament games was

formed, for example, using the algorithm (1). Then this sequence was parallelized. At

the end, the resulting dependency graph of the tournament games was encoded with

matrices I1 and I2.

Thus, we defined the semantics of the algorithmic skeleton named asynchronous

round-robin tournament as the higher order function: ART<void prepare(int i); void

play(int i, int j)>.

6 Experimental Study of Asynchronous Round-Robin

Tournament Skeleton

The asynchronous round-robin tournament skeleton was used to build the orchestrator

program that controls task submission to the enterprise desktop grids. The prepare and

play parameters of the skeleton are algorithms for processing tasks on the desktop grid

system. Testing was performed on a typical problem of sorting a large data set. The

data set was divided into several files. The prepare(i) algorithm implemented the sort-

ing of a single file identified by the block number i in the data set. As a result of the

play(i, j) algorithm, the numbers in the pre-sorted files i and j were ordered so that the

concatenation of files i and j formed an ordered sequence of numbers. The overall pro-

cessing result was a sorted set of M files with identifiers 0, 1, 2, .., M-1. Sequential

concatenation of 0, 1, 2, .., M-1 files formed an ordered sequence of numbers at the end

of processing. At the beginning of processing the files were filled with random num-

bers.

In the experiments we studied: the rate of issuing prepare/play tasks in the imple-

mentation of the orchestrator according to the scheme in Fig. 1c; the sorting speedup

when prepare/play tasks are calculated in distributed computing environment; the set-

ting of the orchestrator to work in the Everest platform. For all experiments, the orches-

trator was implemented in C++ language using Visual Studio 2015 compiler for the

desktop system and GCC 4.1.2 compiler for the cluster system. We used x86_64 opti-

mal performance compilation mode.

The rate of task submission and the correctness of the algorithm that implements the

ART skeleton was tested on Intel(R) Core(TM) i3 - 3220T CPU @ 2.80GHz computer

with 4 GB of RAM on board. We used stubs of the prepare/play algorithms and 4

worker processes (N=4 in Fig. 1c). Blocks containing only one integer number were

processed in the prepare/play stubs. The data set was stored in RAM. The number of

data elements varied from 100 to 1000 in increments of 100. The maximum number of

tasks in the experiment was 1000 prepare tasks and 1000 × (1000 − 1) 2⁄ play tasks,

that was 500,500 tasks in total. Two types of tournaments were tested: the TRIV sort

tournament constructed by parallelizing the algorithm (1); the OPTIM sort tournament

with a smaller DAG diameter compared to the TRIV sort. The test results are shown in

Table 1.

The experiment showed that sequential actor implementation with message ex-

change is suitable for controlling distributed processing in the desktop grid even in the

case of a large number of short tasks. One task requires two messages (see Fig. 1c). It

results in sending 1,001,000 messages between actors, when the number of blocks is

equal to 1000. But the processing time still remains less when 0.5 second on a processor

with relatively low performance. Also it can be seen that different tournaments (differ-

ing in matrices I1 and I2) are almost the same in terms of execution time.

In the second series of experiments, the possibility of obtaining a speedup when pro-

cessing a large set of data on the enterprise desktop grid was investigated. As a model

of enterprise desktop grid environment, we used Sergey Korolev cluster system. Sergey

Korolev cluster is installed at the Samara University. The cluster configuration is pre-

sented on the hpc.ssau.ru website. In the tested MPI program, the control process (rank

= 0) served as the orchestrator, the remaining worker processes (rank > 0) processed

tasks from the orchestrator. The files being sorted were available in all MPI-processes

using the IBM GPFS distributed file system.

Table 1. Total submission time of all tournament tasks depending on

 the number of blocks in the data set.

Number of

blocks
OPTIM sort, s TRIV sort, s

100 0.00260576 0.00328716

200 0.0131043 0.013965

300 0.0362816 0.0354059

400 0.0487192 0.0705439

500 0.0654783 0.0765974

600 0.142984 0.122198

700 0.215872 0.185085

800 0.199767 0.319882

900 0.277575 0.260136

1000 0.390505 0.420731

The sorting was applied to a data set of size from 10 to 100 files in increments of 10.

Each file in the set contained 189,000,000 four-byte integers (~ 720MB). The test re-

sults are shown in Table 2. For a given number of files, only the best result is shown

among the results with different distribution of worker processes on the nodes of the

cluster (in Table 2 nnode is the number of nodes, ppn is the number of simultaneously

running tasks on one node). The number of nodes ranged from 2 to 19, while the number

of processes per node was fixed to 2. This cluster configuration corresponds to a small

enterprise desktop grid. The speedup was estimated based on the average execution

time of prepare task (55.7468 seconds) and play task (6.70886 seconds) when sorting a

set of 20 files in the configuration nnode = 1, ppn = 1. Thus, the sequential execution

time in seconds for processing M files was estimated by the formula 55.7468 × 𝑀 +
6.70886 × 𝑀 × (𝑀 − 1)/2.

Experiments show that it is possible to achieve significant speedup while sorting sets

of 30 files. The best result was ~5 times speedup and ~1 hour reduction of computing

time. As the number of files increases, the network was overloaded and the speedup

dropped. However, we sorted 100 files with the speedup of 3.23. Due to the longer

sorting time, the absolute reduction in time reached ~7 hours, which is a significant

result.

We conducted a simulation experiment to assess how fast sorting could be performed

with our ART skeleton, if we have no loss of performance due to the network overload.

In the experiment the time of prepare task was also taken to be 55.7468 seconds, and

the time of play task was taken to be 6.70886 seconds of model time. Simulations were

computed with required number of workers (for example, 50 workers for 100 files) for

the OPTIM sort tournament. The speedup was evaluated similarly to the experiments

presented in Table 2. The results of the simulation experiment are shown in Table 3.

Table 2. The dependence of the sorting time on the number of files.

Number of

files
Nnode ppn

Sorting

time, s
Speedup

10 2 2 288.434 2.97

20 4 2 457.772 5.22

30 7 2 911.613 5.03

40 7 2 1679.97 4.44

50 13 2 2974.02 3.70

60 11 2 3962.42 3.84

70 13 2 5605.15 3.58

80 15 2 7368.07 3.48

90 17 2 9548.26 3.33

100 19 2 12000.3 3.23

Table 3. The dependence of the sorting time on the number of files (simulation experiment).

Number of

files

Sorting

time, s
Speedup

10 149.671 5.74171

20 250.304 9.54688

30 350.937 13.0814

40 451.57 16.5263

50 552.202 19.9305

60 652.835 23.3129

70 760.177 26.4467

80 854.101 30.043

90 961.443 33.1649

100 1055.37 36.7489

From Table 3 it can be seen that for a small data sets up to 30 files, the actual speedup

(in Table 2) is only 2 .. 2.5 times less than theoretical speedup (in Table 3), but for

larger data sets the difference reaches 10 times or even more. This suggests that there

is a room for further optimization. For example, one can use caching and/or direct file

transfer between worker processes.

We also set up a testbed for testing the orchestrator application in the desktop grid

running the Everest platform. The tuning and testing of its functionality was carried out

similarly to [17], except that the ART skeleton with the OPTIM sort tournament was

used in the orchestrator.

7 Discussion

Let's discuss some particularities of our approach. The article presents a sorting

method that resembles bubble sorting (see the algorithm (1)), except that it uses blocks

and is parallel. This similarity leads to some loss of performance, but makes sorting

applicable to desktop grids.

Both the TRIV and OPTIM sorting algorithms correspond to the ART skeleton. They

differ only in DAG diameters. The OPTIM sorting has less diameter, thus potentially

more parallel. The advantage of TRIV sorting over OPTIM sorting is that it takes up

less memory. The TRIV sorting has linear memory complexity by block number (see

[17] for details).

The difference between our work and [18] is that the AllPairs skeleton implies task

independence and is performance oriented. For example, the ART skeleton prohibits

simultaneous submission of (1,2) and (2,3) tasks, (1,2) and (1,3) tasks, etc. The problem

of performance optimization, solved in AllPairs, is also of interest to our skeleton, but

is not covered in this article.

The scope of application of our method includes the scope of the AllPairs skeleton.

In addition, the method can be used to solve problems in which the processing of a pair

implies write access to the data area associated with the element of the pair. For exam-

ple, we plan to use Everest platform to determine the frequency of words in Twitter on

an enterprise desktop grid during periods of it inactivity.

The MapReduce [19] skeleton is beyond the scope of our work because it is based

on peer-to-peer communication between compute nodes. On the contrary, desktop grid

systems, namely systems built on the Everest platform, support the star topology.

There are a number of grid systems that use static DAGs of tasks, for example DAG-

man meta scheduler in the CondorHPC (https://research.cs.wisc.edu/htcondor/). Using

dynamic tasks helps us to manage larger graphs potentially with millions of tasks. This

feature was demonstrated in the experiments and shown in Table 1.

8 Conclusions

A method for the development of algorithmic skeletons for automating computations

in enterprise desktop grids based on a variant of the actor model of calculations is pro-

posed. The method was successfully applied to the development of the skeleton called

asynchronous round-robin tournament. The practical use of the asynchronous round-

robin tournament skeleton to build the orchestrator of a grid system was demonstrated

in solving the block sorting problem.

References

1. González-Vélez, H., & Leyton, M.: A survey of algorithmic skeleton frameworks: high-

level structured parallel programming enablers. Software: Practice and Experience Vol. 40,

Issue 12, pp. 1135-1160. John Wiley & Sons, Inc. New York, NY, USA (2010)

2. Volkov S., Sukhoroslov O.: Running Parameter Sweep Applications on Everest Cloud Plat-

form. Computer Research and Modeling, Vol. 7, No. 3, pp. 601-606. Institute of Computer

Science, Izhevsk, Russia (2015)

3. Schlinker, B., Mysore, R.N.: Condor: Better topologies through declarative design. In:
Schlinker, B., Mysore, R.N., (eds.) SIGCOMM 2015 - Proceedings of the 2015 ACM Con-

ference on Special Interest Group on Data Communication, pp. 449-463. Association for

Computing Machinery, Inc, London (2015)

4. Anderson, D.P.: BOINC: A system for public-resource computing and storage. Proceedings

- IEEE/ACM International Workshop on Grid Computing, pp. 4-10. IEEE, Pittsburgh, PA,

USA (2004)

5. Fedak, G., Germain, C., Neri, V., Cappello, F. XtremWeb: A generic global computing sys-

tem. Proceedings - 1st IEEE/ACM International Symposium on Cluster Computing and the

Grid, CCGrid 2001, No. 923246, pp. 582-587. IEEE, Brisbane, Queensland, Australia, Aus-

tralia (2001)

6. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P. OurGrid: An approach to easily as-

semble grids with equitable resource sharing. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), No.

2862, pp. 61-86. Springer, Berlin, Heidelberg (2003)

7. Afanasyev A.P., Lovas R.: Increasing the computing power of distributed systems with the

help of grid systems from personal computers. . In: Afanasyev A.P., Lovas R., (eds.) Pro-

ceedings of the conference “Parallel Computational Technologies (PCT'2011)”, pp. 6-14.

Publishing Centre NRU, Chelyabinsk (2011)

8. Cérin, C., Fedak, G.: Desktop grid computing. CRC Press, Paris (2012)

9. Choi, S., Kim, H.: Characterizing and classifying desktop grid. In: Choi, S., Kim, H., (eds.)

Proceedings - Seventh IEEE International Symposium on Cluster Computing and the Grid,

CCGrid. No. 4215446, pp. 743-748. IEEE, Rio De Janeiro, Brazil (2007)

10. Ivashko E.: Enterprise Desktop Grids/ CEUR Workshop Proceedings, 1502, pp. 16-21.

CEUR-WS, Dubna (2015)

11. Mazalov, V.V., Nikitina, N.N., Ivashko, E.E.: Task scheduling in a desktop grid to minimize

the server load. International Conference on Parallel Computing Technologies, pp. 273-278

(2015). doi: 10.1007/978-3-319-21909-7_27

12. De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: A taxonomy of actor

models and their key properties. AGERE 2016 - Proceedings of the 6th International Work-

shop on Programming Based on Actors, Agents, and Decentralized Control, co-located with

SPLASH, pp. 31-40. Association for Computing Machinery, Inc, New York (2016)

13. Senger, Hermes & da Silva, Fabrício.: Bounds on the Scalability of Bag-of-Tasks Applica-

tions Running on Master-Slave Platforms. Parallel Processing Letters. vol. 22, No. 2. World

Scientific, USA (2012)

14. Farkas, Z., Kacsuk, P., Balaton, Z., Gombás, G.: Interoperability of BOINC and EGEE. Fu-

ture Generation Computer Systems, vol. 26, is. 8, pp. 1092-1103 (2010)

15. Afanasiev, A.P., Bychkov, I.V., Zaikin, O.S.: Concept of a multitask grid system with a

flexible allocation of idle computational resources of supercomputers. In: Afanasiev, A.P.,

Bychkov, I.V., Zaikin, O.S., (eds.) Journal of Computer and Systems Sciences International,

vol. 56, is.4, pp. 701-707 (2017). doi: 10.1134/S1064230717040025

16. Sukhoroslov, O., Volkov, S., Afanasiev, A. A.: Web-Based Platform for Publication and

Distributed Execution of Computing Applications. 14th International Symposium on Paral-

lel and Distributed Computing (ISPDC), pp. 175-184, IEEE (2015)

17. Vostokin, S.V., Sukhoroslov, O.V., Bobyleva, I.V., Popov, S.N.: Implementing computa-

tions with dynamic task dependencies in the desktop grid environment using Everest and

Templet Web. CEUR Workshop Proceedings, Volume 2267, pp. 271-275. CEUR-WS,

Dubna (2018)

18. Moretti, C., Bulosan, J., Thain, D., Flynn, P. J.: All-pairs: An abstraction for data-intensive

cloud computing. 2008 IEEE International Symposium on Parallel and Distributed Pro-

cessing, pp. 1-11, IEEE (2008)

19. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. 51(1),

pp.107-113, Communications of the ACM (2008)

